Hypoglycaemic agents*

D. F. HAYMAN, V. PETROW AND O. STEPHENSON

Various 3-substituted derivatives of 1-(p-vinylbenzenesulphonyl)urea, 1-[p-(2-chloroethyl)benzenesulphonyl]urea and 1-[p-(2-bromoethyl)benzenesulphonyl]urea are described. Several of the compounds possess noteworthy hypoglycaemic activity on oral administration in rabbits. In contrast, several related 5-substituted derivatives of 2-[p-(2-chloroethyl)benzenesulphonamido]-1,3,4-thiadiazoles and <math>-1,3,4-thiadiazoles were virtually inactive.

REPLACEMENT of the methyl group of tolbutamide (I; R = Me, R'=Bu) by one of the lower alkyl groups leads to sulphonylureas which still possess significant hypoglycaemic activity (Gryglewski, 1957; Gourley, 1958). A new structural type in which the methyl group is replaced by an alkenyl group, and specifically by a vinyl group (I; $R = CH: CH_2$, R' = Bu), is reported herein. As this compound showed significant biological activity the work was extended to the preparation of the *p*-vinylbenzenesulphonylureas listed in Table 2. The most potent compounds in the series proved to be the n-butyl, cyclopentyl, cyclohexyl and cycloheptyl derivatives (I; $R = CH: CH_2$, $R' = Bu^n$, cyclopentyl, cyclohexyl or cycloheptyl).

New intermediate isocyanates were prepared by standard methods, viz—reaction of the amine hydrochloride with excess of phosgene in an appropriate solvent at or near the boiling-point. Several of the isocyanates (Table 1) were characterised by conversion into the phenylureas. *p*-Vinylbenzenesulphonamide, used in early preparative work, was obtained from 4-(2-bromoethyl)benzenesulphonamide (II; X = Br, $Y = NH_2$) by an improved process based upon the earlier work of Inskeep & Deanin (1947) and of Wiley & Ketterer (1953). It was later found to be more convenient to prepare the *p*-vinylbenzene derivatives by the action of aqueous ethanolic alkali hydroxide upon the appropriate I-substituted 3-[*p*-(2-bromo- or chloro-ethyl)benzenesulphonyl]ureas (Table 3). Later biological data revealed that several of these compounds themselves (I; $R = CH_2 \cdot CH_2 \cdot Br$ or $CH_2 \cdot CH_2 \cdot CI$, $R' = Bu^n$, cyclohexyl or, cycloheptyl) were at least equal to the derived *p*-vinylbenzene compounds in hypoglycaemic activity.

p-(2-Chloroethyl)benzenesulphonyl chloride (II; X = Y, Y = Cl), a compound not previously described in the literature, was obtained by direct chlorosulphonation of phenethyl chloride at 15–20°, and converted into the required sulphonamide (II; X = Cl, $Y = NH_2$) by reaction with ammonia in a two-phase chloroform-water medium.

Three sulphonylthioureas (III; $R = CH: CH_2$, $R' = Pr^n$, Buⁿ or allyl), were prepared by reaction of *p*-vinylbenzenesulphonamide with the appropriate isothiocyanate. Reaction of *p*-(2-chloroethyl)benzenesulphonamide with butyl isothiocyanate yielded the sulphonylthiourea (III; R =

From the British Drug Houses Ltd., Graham Street, London, N.1.

* The fourth paper in this series.

 $CH_2 \cdot CH_2 \cdot Cl$, $R' = Bu^n$), which was smoothly oxidised to the sulphonylurea (I; $R = CH_2 \cdot CH_2 \cdot Cl$, $R' = Bu^n$) by the action of hydrogen peroxide in alkaline solution (compare Shah, Mhasalkar, Patki & Deliwala, 1959). Some of the 2-chloroethyl and 2-bromoethyl compounds (Table 3) were also prepared by routes other than that involving reaction of the sulphonamide with an isocyanate in aqueous alkaline acetone (see Experimental), but these routes invariably gave inferior yields of products.

Finally, a series of 2-[p-(2-chloroethyl)benzenesulphonamido]-1,3,4thiadiazoles (IV; R = CH₂·CH₂·Cl, R' = alkyl, X = S) [compare Janbon, Chaptal, Vedel & Schaap (1942) and Loubatierès (1944, 1955)], and of 2-[p-(2-chloroethyl)benzenesulphonamide]-1,3,4-oxadiazoles (IV; R = CH₂·CH₂·Cl, R' = alkyl, X = O) [compare O'Neal, Rosen, Russell & Blumenthal (1962)] were synthesised. Two of the thiadiazoles were converted into the corresponding 2-(p-vinylbenzenesulphonamido)-1,3,4-thiadiazoles (IV; R = CH:CH₂, R' = Pr¹ or Bu¹, X = S) by treatment with ethanolic alkaline hydroxide solution. Surprisingly, these latter heterocyclic derivatives were all less active than the aromatic types (I).

We are indebted to Dr. A. David and his colleagues for biological data.

Experimental

Most of the examples given typify the methods used for the preparation of the compounds listed in Tables 1 to 3, which contain relevant analytical data.

trans-4-Methylcyclohexyl isocyanate. A suspension of trans-4-methylcyclohexylamine hydrochloride in chloronaphthalene (200 ml, "mixed isomers") was heated to 140° and treated with a fairly rapid stream of phosgene gas for 3 hr. The phosgene was stopped and nitrogen passed into the mixture whilst the temperature was raised to $180-200^{\circ}$ for 3 hr. The residual oil was distilled at 5 mm to yield crude material (50.8 g), b.p. 60-100° at 5 mm. This was refractionated to give the pure product (35.5 g), b.p. 60 to 60.5° at 6 mm.

1-(trans-4-Methylcyclohexyl)-3-phenylurea. The foregoing isocyanate

	Reaction					, of of			Found		Ī	Required	
for R.NCO b.p. °C	b.p. °C		mm	đu	ပံ	phenylurea	Formula	υ	н	z	c	Н	z
c 110–114	110-114	1	A.P.	1.4320	28	004 E01	C'H"NO	1 OF	1.0	12.0	60.05	0.0	13.6
с 184			A.P.	1-4295	26	671-171	Contraction Contra	1989	1.10	996 996	1.89	10.7	665
e 196 A		4	A.P.	1.4460	22	00-C0	Contraction Contra	222	100		969	10	000
d 145–146 A		∢	A.P.	1-4470	26	1-71	C,H,NO	94-9 64-9	700 700	12.7	649	- 00	12:0
c 58-60		-	9	1-4550	23	204-206	CuHinNo CuHinNo	9.69 9.69	986 94	9.51 9.9	0.69	6.6 4.6	10.1
e 66 10		H		1.4522	22		Cittano Cittan	69-7	9.6	10.0	0.69	9.4	10.1
e 60 6		9		1-4500	23	*/01-C01	C ₁ H ₁₃ No C ₆ H ₁₃ NO	68.6	9.2	10-2	0-69	9-4	10.1
e 69–70 16		16		1-4670	27	214-210 185-187	C ₆ H ₁₃ NO C ₁₄ H ₂₀ N ₃ O	72.4	8-7	11.8	72.4	8.7	12·1
d 85–87 7		2		1 ·4814	25	154-156	C.H.NO	73-3	6.8	11-3	73.2	0.6	11-4
e 194–196 A.P.		A.F		1-4751	22	128-130	C.H.NO	72.9	8.4	10-1	72.4	8.7	10-1 12-1
e 215–217 A.P.		Ā				106 100	C,H,NO	72.7	6.7	11.4	73.7	0.0	11.4
b 122 7·5		r.				001-001	Coll Hono	1.00	9.9	1 % C	2005 1005	2.00	8-0 8-0
a 188–190 A.P.		V	Ŀ.			001-401	C,H,NOS	70.0	† .0	2.01	CC-0/	0	17.5
						75-76	C ₁₁ H ₁₆ N ₂ OS	59.2	6.9	14-0,	58-9	7-2	14:3,

TABLE 1. ISOCYANATES (R.NCO) AND DERIVED PHENYLUREAS (R.NH.CO.NH.Ph)

toluene. chlorobenzene. o-dichlorobenzene. o-dichlorobenzene. œ-chloronaphthalene (usually mixed isomers).

ତ୍ତ୍ତ୍ତ୍ତ୍ତ

= sulphur.= identical with compounds synthesised from amine, R.NH, and phenyl isocyanate.

D. F. HAYMAN, V. PETROW AND O. STEPHENSON

(1 g) was added to a solution of aniline (1 ml) in dry benzene (10 ml) and the mixture was heated on a steam-bath for 10 min and then diluted with light petroleum (b.p. $60-80^{\circ}$). The *product* had m.p. 214-216° (from ethanol) and was identical with the material obtained by reaction of phenyl isocyanate with *trans*-4-methylcyclohexylamine.

Styrene-4-sulphonamide (i) A solution of p-(2-bromoethyl)benzenesulphonamide (80 g) [compare Inskeep & Deanin (1947) and Wiley & Ketterer (1953)] in ethanol (800 ml) was treated with a solution of potassium hydroxide (60 g) in ethanol (800 ml) and the mixture heated under reflux for 8 hr after which time the bulk of the ethanol was boiled off. The residual solid was dissolved in water (550 ml), and the solution was heated to 90° and filtered after the addition of decolorising charcoal. The cooled filtrate was acidified with hydrochloric acid to yield the product (52.5 g), m.p. 138–139°. This material was pure enough for use. A sample crystallised from water had m.p. 140–141°. Found: C, 52·3; H, 4·8; N, 7·3; S, 17·0. Calc. for C₈H₉NO₂S: C, 52·4; H, 5·0; N, 7·6; S, 17·5%.

(ii) (a) p-(2-Chloroethyl)benzenesulphonyl chloride. 2-Phenethyl chloride (216 g) was added dropwise with stirring to chlorosulphonic acid (537 g) at 15–20°, and the mixture was stirred for a further hr and then poured onto crushed ice (5 litres). The oil was extracted with chloroform and the extract washed successively with water, 5% sodium bicarbonate solution and water. The chloroform was boiled off from the extract and the residual oil distilled at 0.6 mm to give the product (55% yield), b.p. 125–130°, m.p. 54–56° [from ether–light petroleum (b.p. 40–60°)]. Found: C, 40.6; H, 3.4; S, 13.6. C₈H₈Cl₂O₂S requires C, 40.2; H, 3.4; S, 13.4%. A small quantity of a lower-boiling fraction (110–125° at 0.6 mm) presumably contained the ortho-sulphonyl chloride.

(b) p-(2-Chloroethyl)benzenesulphonamide. A solution of the foregoing sulphonyl chloride (131 g) in chloroform (400 ml) was added slowly with stirring to aqueous ammonia (800 ml, d = 0.880). After 1 hr the product (92.6 g) was collected; it had m.p. 179–181° (from water). Found: C, 43.7; H, 4.6; Cl, 16.1; N, 6.4; S, 14.7. C₈H₁₀ClNO₂S requires C, 43.7; H, 4.6; Cl, 16.1; N, 6.4; S, 14.6%.

(c) A solution of the foregoing compound (11.0 g) in ethanol (50 ml) was treated with a solution of potassium hydroxide (8.4 g) in ethanol (75 ml) and the mixture heated under reflux for 3 hr. The solvent was distilled off at reduced pressure, and water (200 ml) added to dissolve the residual solid. The solution was filtered and the filtrate acidified with 5N hydrochloric acid to yield the *product* (7.8 g), m.p. 141-143° (from water containing a little hydroquinone).

1-Phenyl-3-(p-vinylbenzenesulphonyl)urea. A solution of styrene-4-sulphonamide (7·3 g) in acetone (90 ml) was treated with a solution of sodium hydroxide (1·8 g) in a minimum volume of water. The mixture was cooled to 0° and treated with phenyl isocyanate (3·13 g). Stirring was continued for 1 hr at 0°, then for 3 hr at 25°; the mixture was then poured onto crushed ice (800 ml) and filtered. The filtrate was acidified with dilute hydrochloric acid to yield the product (11·4 g), m.p. 162–164°.

-THIOUREA
AND
1-p-vinylbenzenesulphonyl-ureas
3-SUBSTITUTED
TABLE 2.

CH2:CH

1		Ì	~
	s	9993840 9993840 9993840	211110000909999999999999999999999999999
lired	z	0.40 0.40 0.40 0.50 0.50 0.50 0.50 0.50	ర్థరార్థరాల అద్ద జంజారాలు అది. కరారాలు సంగంగం సంగంగ
Required	Н	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	6996999449844 6444888-2228
	c	86-3-2-0 88-3-2-0 89-3-0 89-3-0 89-3-0 89-3-0 80-0 80	3 8369885999898999989899898888888888888888
	s	12:55 11:20 10:7 10:7 9:80 9:80 9:80 9:80 10:7 10:7 10:7 10:7 10:7 10:7 10:7 10:	
pq	z	88905 2008 2005 2008 2008 2008 2008 2008 20	
Found	H	80000445 80000448	χοφορορικορικορικοροκορικονη «υμοποφικομπορικοροκορικονη «υμοποφικομπορικονησικονη «
	C	500 500 500 500 500 500 500 500 500 500	8425888556888888888888888888888888888888
	Formula	COLUMN COLUM	
	m.p. °C	100-102 105-106 116-117 86-88 139-140 118-119 92-94	$\begin{array}{c} 112-113\\ 112-113\\ 133-135\\ 113-114\\ 113-114\\ 113-114\\ 113-114\\ 113-113\\ 113-135\\ 113-132\\ 113-1$
	_		· · · · · · · · · · · · · · · · · · ·
		::::::	
		::::::	·····
	×		sepropyl
		•••••	yl d opyl poyl iotylcycl byl iethyl iethyl iethyl ayl i
			Isopropyl Isoburyl •Buryl •Buryl •Buryl •Buryl •Penryl •Penryl Isobrypropyl 3-Butoxypropyl 3-Butoxypropyl 3-Scolohesyloxypropyl 3-Scolohesyloxypropyl 3-Scolohesyloxypropyl Cyclohesyloxypropyl Cyclohesyloxypropyl Cyclohesyloxypropyl Cyclohesyloxypropyl Cyclohesyloxypropyl Cyclohesyloxypropyl Cyclohesyloxypropyl Cyclohesyloxypropyl S-Cyclohesyloxypropyl Phenyl Phenyl Pflenyl Pflenyl Pflenyl Pflenyl Pflenyl Pflenyl Pflenyl Pflenyl Pflenyl Pflenyl
		Ethyl Propyl Butyl Pentyl Hexyl Heptyl Octyl	Isopropyl Isobutyl Isutyl Isutyl Isopratyl Isopylbutyl Isopylbutyl Isopylbutyl Isopylbutyl Isopylbutyl Isopylbutyl Scheneryl Cycloherylor Cycloherylor Cycloherylor Cycloherylor Cycloherylor Cycloherylor Phenethyl Pheneth

D. F. HAYMAN, V. PETROW AND O. STEPHENSON

						Found	pu			Required	uired	
R			m.p. °C	Formula	с С	н	z	s		H	z	s
p-Bromophenyl	:	:	178-180	C ₁₆ H ₁₃ BrN ₅ O ₃ S	47-5	3-6	7.3	8.1 }	47.3	3.4	7.4	84
1-Naphthyl 2-Ethylthioethyl	::	::	161 109-110	C ₁₉ H ₁₆ N ₃ O ₈ S C ₁₃ H ₁₆ N ₃ O ₃ S ₂	65-0 49-6	4-7 5-7	7.9 8.8	20-0 20-0	64-8 49-70	4.6 6.8	0.6 6.8	9.1 20.4 20.4
				CH ₃ : CH	SO: NH CS NHR	CS-NHR						
Propyl Butyl Allyl	::::	:::	90-91 94-95 89-91	С ₁₃ Н18N3O_S2 С13Н18N3O_S2 С12Н18N3O2S2 С12Н14N3O2S3	50-9 52-5 50-5	5. 1.94 6.1.3	₽.6 8.6 8.6	21:5	50-7 52-3 51-0	5.7 6.1 5.0	9.9.9 8.4.0	22.6 21.5
			* Co	* Corrected m.p.	' = chlorine.	orine.		+ = bromine.				

TABLE 3. 3-SUBSTITUTED 1-(p-2-HALOGENOETHYL)BENZENESULPHONYLUREAS

·SO ₂ ·NH·CO·NHR	
х.сн".сн"	Ì

							Found					Required		
ਸ		×	ш.р. °С	Formula	c	н	Hal	z	s	υ	Н	Hal	z	s
Propyl Butyl - Butyl - Cyclopsentyl - Cyclobeptyl - Cyclobeptyl - Butyl - Cyclopsentyl - Cyclopsentyl			142–144 122–123 122–123 111–1143 129–130 129–130 132–130 132–130 145–146 145–146	CONTRACTOR CONTRAC	442-24 44 44-24 44 44 44 44 44 44 44 44 44 44 44 44 4	80000000000000000000000000000000000000	22222222222222222222222222222222222222	9888588555 2985901954	10-2 0-2 0-2 0-2 0-2 0-2 0-2 0-2 0-2 0-2	444888884444 66668688444 666686999	80080989889999 800809999999999999999999	2220003220003220003220003220003220003220003220003220003220003220003200032000320003200032000000	0.88884-4444	2000 2000 2000 2000 2000 2000 2000 200
Cycloheptyl	::		152-155	CleH3BrN205S	48.0		19.61		1.71 80	47.6	5.7	361 961	46 <u>9</u>	6.6

HYPOGLYCAEMIC AGENTS

Crystallisation from acetone-light petroleum (b.p. $60-80^{\circ}$) raised the m.p. to $168-169^{\circ}$.

1-[p-(2-Bromoethyl)benzenesulphonyl]-3-cyclohexylurea. Cyclohexyl isocyanate (68.8 g) was added with stirring to a mixture of p-(2-bromoethyl)benzenesulphonamide (132 g) in acetone (1200 ml) with a solution of sodium hydroxide (20 g) in water (20 ml) at 8-12° during 20 min. Stirring was continued at room temperature for 1 hr and then at 35-45° for 2 hr. The mixture was cooled and poured onto crushed ice (ca 4 litres). The resultant solution was filtered and the filtrate acidified with dilute hydrochloric acid to yield the product (187 g), m.p. 165-166° (from aqueous ethanol).

1-Cyclohexyl-3-(p-vinylbenzenesulphonyl)urea. A refluxing suspension of the foregoing compound (38.9 g) in ethanol (150 ml) was treated with a solution of sodium hydroxide (8.8 g) in water (10 ml) and heating continued for 3 hr. It was then evaporated to dryness at reduced pressure and the residue dissolved in water (500 ml), heated to 80° with decolorising charcoal and filtered. The filtrate was cooled and acidified with dilute hydrochloric acid to yield the product (18.2 g), m.p. 169.5–170° (decomp.) (corr.) after crystallisation from aqueous ethanol.

3-[p-(2-Chloroethyl)benzenesulphonyl]-1-t-butylurea was prepared in 80% yield by reaction of t-butyl isocyanate with p-(2-chloroethyl)benzenesulphonamide in aqueous acetone containing an equivalent of sodium hydroxide as described earlier. It had m.p. 142–143° (from aqueous ethanol). 3-(p-Vinylbenzenesulphonyl)-1-t-butylurea was obtained in 80% yield when a solution of the foregoing compound (8 g) in ethanol (75 ml) was treated with a solution of sodium hydroxide (2.5 g) in water (4 ml) and the mixture refluxed for 3 hr. It had m.p. 134–135° (from aqueous ethanol). 1-Propyl-3-(p-vinylbenzenesulphonyl)thiourea. Propyl isothio-cyanate (2.4 g) was added with stirring to a solution of styrene-4-sulphon-amide (3.7 g) in acetone (45 ml) containing 10N sodium hydroxide solution (2 ml) at 0–5°. The mixture was stirred at 20–25° for 4 hr, and then poured onto crushed ice. After filtration the filtrate was acidified to yield the product (4.4 g), m.p. 90–91° [from benzene-light petroleum b.p. 60–80°]].

The following examples illustrate other methods used for the preparation of some of the compounds listed in the Tables:

1-[p-(2-Chloroethyl)benzenesulphonyl]-3-cyclohexylurea. (a) Ethyl p-(2chloroethyl)benzenesulphonylcarbamate (see Marshall & Segal, 1958). A mixture of p-(2-chloroethyl)benzenesulphonamide (11 g) and anhydrous potassium carbonate (20 g) in acetone (100 ml) was heated under reflux with stirring, and ethyl chloroformate (6 g) added during 1 hr. Heating was continued for a further 3 hr and the solid collected after cooling. This was dissolved in water (80 ml) and acidified with hydrochloric acid to yield the product (10·1 g), m.p. 107–109° (from dilute ethanol). Found: C, 45·5; H, 5·0; Cl, 12·2; N, 5·1; S, 10·9. $C_{11}H_{14}CINO_4$ S requires C, 45·3; H, 4·8; Cl, 12·2; N, 4·8; S, 11·0%.

(b) A solution of the foregoing carbamate (2.9 g) in boiling toluene (25 ml) was treated with cyclohexylamine (1 g) and the mixture heated

1			,	
		s	18:55 18:55 17:8 17:8 17:8 17:8 16:6 16:6	10-15 9-7 9-3 8-7 8-7
		z	12:1 12:1 11:7 11:7 10:5 10:5	13:3 12:7 12:2 12:2 11:4
	Required	σ	0010 0010 005 005 005 005 005 005 005 00	11-2 10-75 10-3 10-3 9-6
		н	444000400 LL-00000000	449 649 649 645 645 845
		υ	45.1 45.1 46.7 46.7 48.5 49.8 51.0	45.6 47.3 47.3 47.3 47.3 48.9 48.9 48.9 51.95
		s	18:7 18:5 17:9 17:8 17:8 17:8 16:7 16:7	10.0 9.9 9.6 8.9 9.1
		z	100 100 100 100 100 100 100 100 100 100	13-2 12-6 12-6 12-4 11-7
×	Found	σ	6.01 4.05 4.09 4.09 4.09 4.09 4.09 4.09 4.09 4.09	11-1 11-0 111-0 10-7 10-3 10-3
		Н	440400000 80000000000000000000000000000	4488888 470084
	-	υ	45:1 45:3 46:5 46:5 48:0 48:0 51:1 51:1	45.9 47.7 47.6 47.6 49.0 48.6 52.1
		Formula	C C C C C C C C C C C C C C	C13H14CIN3O3S C13H14CIN3O3S C13H14CIN3O3S C14H16CIN3O5S C14H16CIN3O5S C14H16CIN3O5S C14H18CIN3O5S C14H18CIN3O5S
		m.p. °C	126-127 133-134 133-134 134-168 134-158 134-122 204-206 151-123 180-183 204-206	$\begin{array}{c} 139-141\\ 139-141\\ 110-112\\ 118-120\\ 100-102\\ 161-163\\ 102-103\end{array}$
		×	งงงงงงงงง	000000
				:::::
				:::::
l		R	ylethy	::::::
	i	;	Propyl Isopropyl Cyclopropyl Isobutyl s-Butyl Cyclopentyl Cyclohexyl 2-Cyclopentyl	Ethyl Propyl Isopropyl Isobutyl t-Butyl Cyclohexyl

z=0

CI-CH^{*}·CH^{*}·CH^{*}·SO^{*}·NHÇ

ż

HYPOGLYCAEMIC AGENTS

under reflux for 4 hr, after which time volatile material was distilled off at reduced pressure. The residue was extracted with 1% aqueous ammonia solution, filtered, and the filtrate acidified with dilute hydrochloric acid. The *product* (1.2 g) had m.p. 129–130° (from aqueous ethanol).

1-Butyl-3-[p-(2-chloroethyl)benzenesulphonyl]urea [see Georgiev (1960) and Das Gupta (1961)]. (a) p-(2-Chloroethyl)benzenesulphonylurea. A mixture of p-(2-chloroethyl)benzenesulphonamide (22 g) and potassium cyanate (10·1 g) in ethanol (200 ml) and heated under reflux for 2 hr, and then ethanol (100 ml) was distilled off. The potassium salt was collected, dissolved in water, filtered, and the filtrate acidified with dilute hydrochloric acid to yield the product (18 g), m.p. 178–180° (from ethanol). Found: C, 41·2; H, 4·3; Cl, 13·2; N, 10·7; S, 11·9. C₉H₁₁ClN₂O₃S requires C, 41·2; H, 4·2; Cl, 13·5; N, 10·7; S, 12·2%.

(b) A mixture of the foregoing sulphonylurea (6.6 g), isobutyl methyl ketone (20 ml) and acetone (2 ml) was treated with butylamine (2 g), added during 20 min with occasional shaking. It was then heated under reflux for 2 hr, cooled, treated with 4% aqueous sodium hydroxide solution (25 ml), and the organic layer separated and washed with water. The combined aqueous extracts were acidified with dilute sulphuric acid and the *product* (6.55 g) collected. It had m.p. 122–123° (from aqueous ethanol).

2 (a) 1-Butyl-3-[p-(2-chloroethyl)benzenesulphonyl]thiourea. Butyl isothiocyanate (12.7 g) was added with stirring to a mixture of p-(2-chloroethyl)benzenesulphonamide (22.0 g) in acetone (225 ml) containing sodium hydroxide (4 g) in water (4 ml) at 0-5°. It was then warmed to 50° for 3 hr, cooled and poured onto crushed ice (2 litres). The solution was filtered and the filtrate acidified with hydrochloric acid to yield the product (26.5 g), m.p. 110-112° (from aqueous ethanol). Found: C, 46.9; H, 5.7; Cl, 10.5; N, 8.6; S, 18.7. $C_{13}H_{19}ClN_2O_2S$ requires C, 46.6; H, 5.7; Cl, 10.6; N, 8.4; S, 19.2%.

(b) Hydrogen peroxide (10 ml of 10% solution) was added to a stirred solution of the foregoing sulphonylthiourea (4 g) in water (60 ml) containing sodium hydroxide (2.0 g) and the mixture was warmed to 40° for 1 hr. The solution was cooled, acidified with dilute hydrochloric acid and extracted with chloroform. The chloroform extract was washed with water and the chloroform distilled off to yield the *product* (1.6 g), m.p. 122-123° (from aqueous ethanol).

1-[p-(2-Bromoethyl)benzenesulphonyl]-3-cyclohexylurea [see Nantka-Namirski & Betzecki (1959)]. (a) O-Methylcyclohexylurea. A mixture of cyclohexylurea (25.6 g) and dimethyl sulphate (25.2 g) was heated carefully to 100°, kept at that temperature for 10 min, then it was cooled, poured onto crushed ice and basified with 30% aqueous sodium hydroxide solution. The mixture was extracted with benzene, the benzene was distilled off and the residual oil distilled at 8 mm to yield the product, b.p. 115-118°. Found: N, 17.8. $C_8H_{16}N_2O$ requires N, 17.9%.

(b) Solutions of the foregoing urea (3.9 g) in acetone (10 ml) and of p-(2-bromoethyl)benzenesulphonyl chloride (7.1 g) in acetone (10 ml) were added simultaneously to a stirred mixture of potassium carbonate

HYPOGLYCAEMIC AGENTS

(3.4 g) in acetone (15 ml) and water (10 ml) at 10° and stirring was continued for 1 hr further. The mixture was poured onto crushed ice (150 ml), extracted with benzene and the extract washed once with water and concentrated. The residual material was hydrolysed by heating with concentrated hydrochloric acid on the steam-bath for 10 min. The crude material (7 g) was collected, washed with water, dissolved in 2% aqueous ammonia solution and filtered to remove insoluble material. Acidification of the filtrate with dilute hydrochloric acid yielded the *product* (3.3 g), m.p. 165–166° (from aqueous ethanol).

2-Amino-5-cyclopentyl-1,3,4-thiadiazole. Cyclopentylcarbonyl chloride (48.5 g) was added to a mixture of thiosemicarbazide (30.5 g) and phosphorus trichloride (40 ml), which was then heated at $60-70^{\circ}$ for 5 hr. The mixture was then cooled, diluted with water (300 ml) and the solution basified with 20% aqueous sodium hydroxide solution. The solids were collected, washed with cold water, dissolved in warm dilute hydrochloric acid, filtered and the filtrate basified with aqueous sodium hydroxide solution. The *product* (26.2 g) had m.p. 234–236° (decomp) (from aqueous ethanol). Found: C, 49.6; H, 6.3; N, 24.9; S, 19.0. Calc. for C₇H₁₁N₃S: C, 49.7; H, 6.55; N, 24.8; S, 18.9%.

2-Amino-5-(2-cyclopentylethyl)-1,3,4-thiadiazole had m.p. $234-236^{\circ}$ (from ethanol). Found: C, 54.7; H, 7.7; N, 21.1; S, 16.6. C₉H₁₅N₃S requires C, 54.8; H, 7.7; N, 21.3; S, 16.25%.

2-[p-(2-Chloroethyl)benzenesulphonamido]-5-(2-cyclopentylethyl)-1,3,4thiadiazole. A solution of the foregoing thiadiazole (9.85 g) in pyridine (35 ml) was cooled slightly and treated with a solution of p-(2-chloroethyl)benzenesulphonyl chloride (12 g) in pyridine (35 ml) and the mixture allowed to stand at room temperature overnight. It was then poured into water (250 ml) and the solution acidified with hydrochloric acid. The solids (15.8 g) were collected, washed with water, dissolved in 2% aqueous ammonia solution and the solution heated to 60° and filtered after the addition of decolorising charcoal. The filtrate was acidified with dilute hydrochloric acid to yield the product, m.p. 204-206° (from ethanol).

5-Isobutyl-2-(p-vinylbenzenesulphonamido)-1,3,4-thiadiazole. A solution of 2-[p-(2-chloroethyl)benzenesulphonamido]-5-isobutyl-1,3,4-thiadiazole (18.05 g) in ethanol (200 ml) was treated with a solution of sodium hydroxide (5 g) in water (5 ml) and the mixture was heated under reflux for 4 hr. Solvent was distilled off at reduced pressure, the residual solid was dissolved in water (200 ml) and the solution was acidified with hydro-chloric acid. The product (12.2 g) had m.p. 135–136° (from aqueous ethanol). Found: C, 51.6; H, 5.7; N, 12.8; S, 19.6. $C_{14}H_{17}N_3O_2S_2$ requires C, 52.0; H, 5.3; N, 13.0; S, 19.8%.

5-Isopropyl-2-(p-vinylbenzenesulphonamido)-1,3,4-thiadiazole, prepared by the foregoing method, had m.p. 122–123° (from aqueous ethanol). Found: C, 50.5; H, 5.1; N, 13.4; S, 20.5. $C_{13}H_{15}N_3O_2S_2$ requires C, 50.4; H, 4.9; N, 13.6; S, 20.7%.

2-Amino-5-isopropyl-1,3,4-oxadiazole (compare Swain, U.S. Patent 2,883,391). A solution of isobutyrohydrazide (36.8 g) in methanol

D. F. HAYMAN, V. PETROW AND O. STEPHENSON

(70 ml) was added dropwise with stirring to a solution of cyanogen bromide (38.6) in methanol (70 ml), with cooling to 20-25°. After the addition was complete the mixture was refluxed for 2 hr, and then concentrated to remove most of the methanol. The residual oil was dissolved in boiling water (70 ml) and the solution brought to pH 8–9 by the addition of ammonia solution. The solids (17.8 g) were dissolved in acetone and the solution was filtered to remove insoluble material. Dilution of the filtrate with light petroleum (b.p. 60-80°) furnished the product, m.p. 180–182° (from acetone). Found: C, 47.5; H, 7.5; N, 33.4. $C_5H_9N_3O$ requires C, 47.2; H, 7.1; N, 33.05%.

2-Amino-5-isobutyl-1,3,4-oxadiazole had m.p. 167-169° after crystallisation from acetone-light petroleum (b.p. 40-60°). Found: C, 51.4; H, 8.3; N, 29.7. C₆H₁₁N₃O requires C, 51.0; H, 7.85; N, 29.8%.

2-Amino-5-t-butyl-1,3,4-oxadiazole had m.p. 222-224° (from aqueous ethanol). Found: C, 50.9; H, 7.8; N, 30.2. $C_{e}H_{11}N_{3}O$ requires C, 51.0; H, 7.85; N, 29.8%.

2-[p-(2-Chloroethyl)benzenesulphonamido]-5-propyl-1,3,4-oxadiazole. A solution of 2-amino-5-propyl-1,3,4-oxadiazole (12.7 g) in pyridine (60 ml) was cooled below 20° and treated with a solution of p-(2-chloroethyl)benzenesulphonyl chloride (23.9 g) in pyridine (60 ml). The mixture was allowed to stand overnight and then diluted with water (250 ml) and acidified with concentrated hydrochloric acid with cooling. The solids were collected, washed with water and dissolved in dilute ammonia solution. The solution was heated to 50° and filtered after the addition of decolorising charcoal. Acidification of the filtrate with dilute hydrochloric acid furnished the product (13.1 g), m.p. 110-112° (from aqueous ethanol).

References

Das Gupta, S. J. (1961). J. Indian chem. Soc., 38, 417-418.

Das Gupta, S. J. (1961). J. Indian chem. Soc., 38, 417-418.
Georgiev, A. (1960). Compt. rend. acad. Bulgare sci., 13, 315-318.
Gourley, D. R. H. (1958). Proc. Soc. exp. Biol., N.Y., 99, 68-71.
Gryglewski, R. (1958). Dissertationes Pharm., 10, 151-168.
Inskeep, G. E. & Deanin, R. (1947). J. Amer. chem. Soc., 69, 2237-2238.
Janbon, M., Chaptal, P., Vedel, A. & Schaap, J. (1942). Montpellier méd., 441.
Loubatières, A. (1944). Compt. rend. Soc. Biol., Paris, 138, 766.
Loubatières, A. (1955). Therapie, 10, 907.
Marshall, J. & Sigal, M. V. (1958). J. org. Chem., 23, 923 and 927.
Nantka-Namirski, P. & Betzecki, C. (1959). Acta Polon. Pharm., 16, 475-478.
O'Neal, J. B., Rosen, H., Russell, P. B., Adams, A. C. & Blumenthal, A. (1962). J. med. pharm. Chem., 5, 617.
Shah, M. H., Mhasalkar, M. Y., Patki, V. M. & Deliwala, C. V. (1959). J. Sci. Ind. Res. (India), 18B, 202.
Swain, A. P. (1959). U.S. Patent 2,883,391.
Wiley, R. H. & Ketterer, C. C. (1953). J. Amer. chem. Soc., 75, 4519-4521.

Wiley, R. H. & Ketterer, C. C. (1953). J. Amer. chem. Soc., 75, 4519-4521.